Hot stage microscopy

Real-world materials applications often take place under variable environmental conditions, including high temperatures. The behavior of your heated material as it recrystallizes, melts, and deforms can inform critical macro- and microscopic observations, such as how a manufactured part might respond to stress or how feed materials behave during production. As a sample’s response to heat is a dynamic process, it must be paired with dynamic observation for accurate insight. Modern heating stages in electron microscopes allow for in situ experiments for high-resolution observation of heated materials. These demanding experiments are capable of linking sample morphology, environment, and thermodynamics, and can help you control the corresponding behavior of the bulk material.

SEM heating stages

There are many considerations when operating electron microscopes at elevated temperatures, such as the desired temperature range, sample size, and chemical environment. The following table shows what is possible with Thermo Scientific temperature stages.

Name

Application

Temperature

Max. Sample Size

Environment

High vacuum heating stage

General-purpose heating, high resolution imaging, in-column detection, fast processes, electron-backscatter diffraction (EBSD)

Up to 1100°C

(EBSD up to 900°C)

10 mm

High vacuum

Environmental SEM (ESEM) stage

Heating in gaseous environment: oxidation or other chemical reactions

Up to 1000°C or 1400°C, depending on the model

5 mm

ESEM

µHeater

Powder heating, chunk lift-out studies (DualBeam), STEM imaging, high-temperature EBSD and EDS, ramp rate of 10,000°C/s

Up to 1200°C

50 µm

Any

Cooling stage, WetSTEM

Precise control over humidity, wetting studies, modest heating

-20°C to +60°C

3 mm

ESEM

Gold on a silicon substrate heated with a SEM hot stage.
Gold on a silicon substrate at approximately 1080°C. The High Vacuum Heating Stage allows all in-lens detectors and imaging modes to be used to image the sample with excellent resolution and contrast.

Resources

Mixture of magnetite and hematite nanoparticles heated at 1030 °C.
Backscattered electron image (left) and EDS maps of iron and oxygen (right) acquired simultaneously.

Texture development on implant material. As the temperature increases from 700 °C to 1300 °C
we can observe a completely different surface structure. Pressure: 120 Pa.

Two-phase Co-Sb alloy during heating to 700°C on the High Vacuum Heating Stage. The antimony-rich
phase sublimated during heating, causing exposure of the second phase.

Mixture of magnetite and hematite nanoparticles heated at 1030 °C.
Backscattered electron image (left) and EDS maps of iron and oxygen (right) acquired simultaneously.

Texture development on implant material. As the temperature increases from 700 °C to 1300 °C
we can observe a completely different surface structure. Pressure: 120 Pa.

Two-phase Co-Sb alloy during heating to 700°C on the High Vacuum Heating Stage. The antimony-rich
phase sublimated during heating, causing exposure of the second phase.

Applications


Samples


Products


Style Sheet to change H2 style to p with em-h2-header class

Contact us