Qdot™ 800 ITK™ Amino (PEG) Quantum Dots
Qdot™ 800 ITK™ Amino (PEG) Quantum Dots
Invitrogen™

Qdot™ 800 ITK™ Amino (PEG) Quantum Dots

Qdot™ 800 ITK™ amino (PEG) quantum dots are the ideal starting material for preparing custom conjugates of ultrabright and photostableRead more
Have Questions?
Catalog number Q21571MP
Price (USD)
892.00
Each
Add to cart
Price (USD)
892.00
Each
Add to cart
Qdot™ 800 ITK™ amino (PEG) quantum dots are the ideal starting material for preparing custom conjugates of ultrabright and photostable fluorescently labeled proteins or other biopolymers. These probes are functionalized with amine-derivatized PEG, which prevents non-specific interactions and provides a convenient handle for conjugation. The amino quantum dots react efficiently with isothiocyanates and succinimidyl esters, or with native carboxylic acids using water-soluble carbodiimides such as EDC. Such derivatives may be used for various labeling and tracking applications that require ultrabright and stable fluorescence. Our Qdot™ ITK™ amino quantum dots are provided as 8 μM solutions and are available in 8 colors of Qdot™ probes.

Important Features of Qdot™ ITK™ Amino Quantum Dots:
• Qdot™ 800 ITK™ amino quantum dot has emission maxima of ∼800 nm
• Extremely photostable and bright fluorescence
• Efficiently excited with single-line excitation sources
• Narrow emission, large stokes shift
• Available in multiple colors
• Ideal for various labeling and tracking applications


Properties of Qdot™ Nanocrystals
Qdot™ probes are ideal for imaging and labeling applications that require bright fluorescent signals and/or real-time tracking. Unique among fluorescent reagents, all nine available colors of Qdot™ probes can be simultaneously excited with a single (UV to blue-green) light source. This property makes these reagents excellent for economical and user-friendly multiplexing applications. Qdot™ labels are based on semiconductor nanotechnology and are similar in scale to moderately sized proteins.

About the Innovator’s Tool Kit Qdot™ ITK™ Reagents
These Qdot™ ITK™ probes are ideal for researchers who wish to prepare specific (non-stocked) conjugates for their applications and need customizable conjugation functionality.

Other Forms of Qdot™ Nanocrystals are Available
In addition to the amine-derivatized form, we offer Qdot™ ITK™ quantum dots with carboxyl and aliphatic hydrocarbon modifications. We’ve also developed a wide range of Qdot™ nanocrystals conjugates and labeling kits. Investigate the properties of Qdot™ nanocrystals or read the Molecular Probes™ Handbook Section 6.6—Qdot™ Nanocrystals to find out more.

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Concentration8 μM
Quantity250 μL
Product TypeQuantum Dot
Chemical ReactivityCarboxylic Acid, Ketone, Aldehyde
Shipping ConditionRoom Temperature
Reactive MoietyAmine, Primary Amine
Label or DyeQdot™ 800
Label TypeQdot Nanocrystals
Product LineITK™, Qdot™
Emission800
Unit SizeEach
Contents & Storage
Store in refrigerator (2–8°C).

Frequently asked questions (FAQs)

What is the best way to remove white precipitate from my ITK Qdot nanocrystals?

Spinning your ITK Qdot nanocrystals at approximately 3,000 rpm for 3-5 minutes should remove the white precipitate from the supernatant. Use the supernatant immediately.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I see a white precipitate in my ITK Qdot nanocrystals; should I be concerned?

The precipitate in the organic ITK Qdot nanocrystals occurs with some frequency. The ITK Qdot nanocrystals sometimes include impurities that show as a white precipitate.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Why do my Qdot nanocrystals appear to be blinking?

Blinking is an inherent property of quantum dots; in fact, all single-luminescent molecules blink, including organic dyes. The brightness and photostability of Qdot nanocrystals makes the blinking more visibly apparent. Under higher energy excitation, Qdot nanocrystals blink even faster.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

My Qdot nanocrystals were brightly fluorescent before I mounted my samples; now I'm seeing a loss of fluorescence. Why is this happening?

Appropriate mounting media selection is very important to retain the fluorescence of Qdot nanocrystals. In our studies, Qdot nanocrystals work best with the following mountants:

HistoMount medium (Cat No. 00-8030); best for long term archiving
Cytoseal 60 Mountant
Clarion Mountant
Most polyvinyl alcohol-based mountants (limited storage time, less than weeks)
Water-based mountants (limited storage time, less than week)
Up to 50% glycerol (limited storage time, less than week)
Note: We do not recommend using ProLong mounting media with Qdot nanocrystals as it will quench their fluorescence.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Why can't I freeze my Qdot nanocrystal solution?

Freezing will cause the product to aggregate. The Qdot nanocrystals cannot be dispersed into solution after aggregation.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.