MAX Efficiency™ DH5α-T1R Competent Cells
MAX Efficiency&trade; DH5&alpha;-T1<sup>R</sup> Competent Cells
Invitrogen™

MAX Efficiency™ DH5α-T1R Competent Cells

MAX Efficiency DH5α T1R Phage-Resistant Competent Cells are high efficiency chemically competent cells for generating cDNA libraries and were developedRead more
Have Questions?
Catalog number 12034013
Price (USD)
174.00
Each
Add to cart
Price (USD)
174.00
Each
Add to cart

MAX Efficiency DH5α T1R Phage-Resistant Competent Cells are high efficiency chemically competent cells for generating cDNA libraries and were developed to confer resistance to the lytic bacteriophages T1 and T5. In addition to supporting blue/white screening, recA1 and endA1 mutations in DH5α increase insert stability and improve the quality of plasmid DNA prepared from minipreps. These cells are suitable for the construction of gene banks or generation of cDNA libraries using derived vectors.
MAX Efficiency DH5α T1R Phage-Resistant Competent Cells have been prepared by a patented modification of the procedure of Hanahan and yield >1 x 109 transformants/μg of monomer pUC19 DNA in a 100 μL transformation reaction.

MAX Efficiency DH5α T1R Phage Resistant Competent Cell features
• Resistance to the lytic bacteriophage T1, one of the most dangerous E. coli phages in high throughput laboratories and genomic centers
• The φ80lacZΔM15 marker that provides α-complementation of the ß-galactosidase gene from pUC or similar vectors and, therefore, can be used for blue/white screening of colonies on bacterial plates containing Bluo-gal or X-gal
• Capable of being transformed efficiently with large plasmids and can serve as a host for the M13mp cloning vectors if a lawn of DH5α-FT, DH5αF', DH5αF'IQ, JM101, or JM107 is provided to allow plaque formation

Genotype
F- φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44 λ-thi-1 gyrA96 relA1 tonA

For Research Use Only. Not for use in diagnostic procedures.
Specifications
Product TypeChemically Competent Cells
Contains F' EpisomeNo
Improves Plasmid QualityYes (endA1)
Cloning Methylated DNANo
Transformation Efficiency LevelHigh Efficiency (>1 x 109 cfu/μg)
Antibiotic Resistance BacterialNo
Cloning Unstable DNANot suitable for cloning unstable DNA
Blue/White ScreeningYes (lacZΔM15)
High-throughput CompatibilityLow
Preparing Unmethylated DNANo
Reduces RecombinationYes (recA1)
Shipping ConditionDry Ice
T1 Phage - Resistant (tonA)Yes
SpeciesE. coli (K12)
FormatTube
Product LineMAX Efficiency™
Quantity5 x 200 μL
Unit SizeEach
Contents & Storage
• MAX Efficiency DH5α-T1R Compentent Cells (5 x 200 μL)
Store Competent Cells at –80°C.

• pUC19 DNA (50 μL at 10 pg/μL)
Store pUC19 DNA at –20°C.

• S.O.C. Medium (2 x 6 mL)
Store S.O.C. Medium at 4°C or room temperature.

Frequently asked questions (FAQs)

How do you recommend that I prepare my DNA for successful electroporation of E. coli?

For best results, DNA used in electroporation must have a very low ionic strength and a high resistance. A high-salt DNA sample may be purified by either ethanol precipitation or dialysis.

The following suggested protocols are for ligation reactions of 20ul. The volumes may be adjusted to suit the amount being prepared.

Purifying DNA by Precipitation: Add 5 to 10 ug of tRNA to a 20ul ligation reaction. Adjust the solution to 2.5 M in ammonium acetate using a 7.5 M ammonium acetate stock solution. Mix well. Add two volumes of 100 % ethanol. Centrifuge at 12,000 x g for 15 min at 4C. Remove the supernatant with a micropipet. Wash the pellet with 60ul of 70% ethanol. Centrifuge at 12,000 x g for 15 min at room temperature. Remove the supernatant with a micropipet. Air dry the pellet. Resuspend the DNA in 0.5X TE buffer [5 mM Tris-HCl, 0.5 mM EDTA (pH 7.5)] to a concentration of 10 ng/ul of DNA. Use 1 ul per transformation of 20 ul of cell suspension.

Purifying DNA by Microdialysis: Float a Millipore filter, type VS 0.025 um, on a pool of 0.5X TE buffer (or 10% glycerol) in a small plastic container. Place 20ul of the DNA solution as a drop on top of the filter. Incubate at room temperature for several hours. Withdraw the DNA drop from the filter and place it in a polypropylene microcentrifuge tube. Use 1ul of this DNA for each electrotransformation reaction.

You offer competent cells in Subcloning Efficiency, Library Efficiency and MAX Efficiency. How do these differ?

There are a few exceptions, but in general the difference is in guaranteed transformation efficiency as follows:

Subcloning Efficiency cells are guaranteed to produce at least 1.0 x 10E6 transformants per µg of transformed pUC19 or pUC18 supercoiled plasmid
Library Efficiency cells are guaranteed to produce at least 1.0 x 10E8 transformants per µg pUC19 or pUC18 DNA
MAX Efficiency cells are guaranteed to produce at least 1.0 x 10E9 transformants per µg pUC19 or pUC18 DNA

Do any Invitrogen competent cells contain DMSO in the freezing medium?

Yes, several of our competent cells products are frozen with DMSO. The presence of DMSO (dimethylsulfoxide) will generally be indicated in the MSDS files if you have a question about a particular product, but here is a list of commonly used products that are known to have DMSO in the freezing buffer:

One Shot OmniMAX 2 T1 Phage Resistant Cells, Cat. No. C8540-03

One Shot INV?F' Chemically Competent Cells, Cat. No. C2020-03 and C2020-06

One Shot MAX Efficiency DH5?-T1 Chemically Competent Cells, Cat. No. 12297-016

MAX Efficiency DH5?-T1 Phage Resistant Cells, Cat. No. 12034-013

MAX Efficiency DH5? Chemically Competent Cells, Cat. No. 18258-012

Library Efficiency DH5? Chemically Competent Cells, Cat. No. 18263-012

MAX Efficiency DH5? F'IQ Cells, Cat. No. 18288-019

MAX Efficiency Stbl2Chemically Competent Cells, Cat. No. 10268-019

When should DMSO, formamide, glycerol and other cosolvents be used in PCR?

Cosolvents may be used when there is a failure of amplification, either because the template contains stable hairpin-loops or the region of amplification is GC-rich. Keep in mind that all of these cosolvents have the effect of lowering enzyme activity, which will decrease amplification yield. For more information see P Landre et al (1995). The use of co-solvents to enhance amplification by the polymerase chain reaction. In: PCR Strategies, edited by MA Innis, DH Gelfand, JJ Sninsky. Academic Press, San Diego, CA, pp. 3-16.

Additionally, when amplifying very long PCR fragments (greater than 5 kb) the use of cosolvents is often recommended to help compensate for the increased melting temperature of these fragments.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.